Generic Muchnik Reducibility and Presentations of Fields
نویسنده
چکیده
We prove that if I is a countable ideal in the Turing degrees, then the field RI of real numbers in I is computable from exactly the degrees that list the functions (i.e., elements of ωω) in I. This implies, for example, that the degree spectrum of the field of computable real numbers consists exactly of the high degrees. We also prove that if I is a countable Scott ideal, then it is strictly easier to list the sets (i.e., elements of 2ω) in I than it is to list the functions in I. This allows us to answer a question of Knight, Montalbán, and Schweber. They introduced generic Muchnik reducibility to extend the idea of Muchnik reducibility between countable structures to arbitrary structures. They asked if R is generically Muchnik reducible to the structure that consists of all sets of natural numbers. Our result for Scott ideals shows that this is not the case. We finish by considering generic Muchnik reducibility of a countable structure A to an arbitrary structure B. We relate this to a couple of conditions asserting the ubiquity of countable elementary substructures of B that are Muchnik above A; we prove that one of these conditions is strictly stronger and the other is strictly weaker than generic Muchnik reducibility.
منابع مشابه
Computable Structures in Generic Extensions
In this paper, we investigate connections between structures present in every generic extension of the universe V and computability theory. We introduce the notion of generic Muchnik reducibility that can be used to to compare the complexity of uncountable structures; we establish basic properties of this reducibility, and study it in the context of generic presentability, the existence of a co...
متن کاملEmbeddings into the Medvedev and Muchnik lattices of Π1 classes
Let Pw and PM be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 subsets of 2 , under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of Pw. We show that many countable distributive lattices are lattice-embeddable below any non-zero element of PM .
متن کاملMass Problems
Informally, mass problems are similar to decision problems. The difference is that, while a decision problem has only one solution, a mass problem is allowed to have more than one solution. Many concepts which apply to decision problems apply equally well to mass problems. For instance, a mass problem is said to be solvable if it has at least one computable solution. Also, one mass problem is s...
متن کاملMass problems and intuitionistic higher-order logic
In this paper we study a model of intuitionistic higher-order logic which we call the Muchnik topos. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well kn...
متن کاملDegrees of unsolvability of 2-dimensional subshifts of finite type
We apply some concepts and results from mathematical logic in order to obtain an apparently new counterexample in 2-dimensional symbolic dynamics. A set X is said to be Muchnik reducible to a set Y if each point of Y can be used as a Turing oracle to compute a point of X. The Muchnik degree of X is the equivalence class of X under the equivalence relation of mutual Muchnik reducibility. There i...
متن کامل